Introduction to Vacuum Coating Technology
Dieter Müller • November 9, 2020
Vacuum Coating — also called ‘Thin Film Technology’; or Physical Vapour Deposition (PVD) — represents an impressive share among the various applications of vacuum technology. In this blog post, we share an overview of the historical development, the various basic principles underpinning the generating of thin films, and the general layout of coating devices.
You might also like

The storage and transport of COVID-19 vaccines has to be managed in a cold chain, with the first approved vaccine by Pfizer-BioNtech requiring storage temperatures of -70 C. Besides using dry ice (solid carbon dioxide at -75.8 C), Vacuum Insulated Panels and vacuum insulation have become attractive solutions.

High Vacuum (HV) and Ultra-High Vacuum (UHV) levels can only be effectively and efficiently obtained by using a main pump that has the functional capabilities. Choosing which pump to use depends on a number of factors, such as noise/vibration, cost (initial and on-going), tolerance to contamination, footprint, maintenance schedules, and resilience to shock.

In our previous blog post, Introduction to Vacuum Coating Technology, we shared various PVD (Physical Vapor Deposition) methods and showed typical products being coated using vacuum technologies. Thin films can be adhered to metal, glass, plastics, ceramics, or paper. In this blog post we will focus on Thermal Evaporation techniques.